Effects of AAC systems with “just in time” programming for children with complex communication needs

Janice Light*, Tom Jakobs*, Kathryn Drager*, Kelly Chewy, Sarah Guthrie*, Lisa Mellman*, and Katherine Riley*
*Penn State University and “InvoTek, Inc

The Problem
• AAC technologies utilizing visual scene displays (VSDs) can significantly enhance the communication of young children with complex communication needs

However, there are two major limitations to current AAC technologies/ apps:
1. It is very time consuming to program new VSDs and vocabulary
 - As a result, partners do not add vocabulary frequently
 - This is not possible for partners to dynamically capture new experiences / vocabulary and add them to AAC technologies on the fly during interactions in daily life
2. It is difficult to capitalize on “teachable moments”
 - One potential solution to this problem is the implementation of AAC technologies that support “just in time” (JIT) programming

• Innovative JIT software called PlayTalk, developed by InvoTek, Inc.

Procedures
• Alternating treatment design with two conditions
 - 2 intervention sessions per week (counterbalanced)
 - One with JIT PlayTalk software
 - One with SDPro software
• AAC technology preprogrammed with VSDs / hotspots
 - Identical VSDs & hotspots programmed in each condition
• New VSDs and hotspots added during the play interactions as required in JIT condition
• Not possible to add new VSDs or hotspots during interaction in SDPro condition

Participants
• 3 children participated
 - Aged 3-5 years
 - Developmental delay
 - E.g., Down syndrome, severe developmental apraxia
 - Had complex communication needs
 - Speech inadequate to meet their communication needs
 - Used AAC to enhance their communication
 - Signs, low tech systems, schedules
 - Were not using VSDs at the time of the study

The Problem

Rehabilitation Research Project

Penn State University

1. The Problem
 • AAC technologies utilizing visual scene displays (VSDs) can significantly enhance the communication of young children with complex communication needs

However, there are two major limitations to current AAC technologies/ apps:
1. It is very time consuming to program new VSDs and vocabulary
 - As a result, partners do not add vocabulary frequently
 - This is not possible for partners to dynamically capture new experiences / vocabulary and add them to AAC technologies on the fly during interactions in daily life
2. It is difficult to capitalize on “teachable moments”
 - One potential solution to this problem is the implementation of AAC technologies that support “just in time” (JIT) programming

Participants
• 3 children participated
 - Aged 3-5 years
 - Developmental delay
 - E.g., Down syndrome, severe developmental apraxia
 - Had complex communication needs
 - Speech inadequate to meet their communication needs
 - Used AAC to enhance their communication
 - Signs, low tech systems, schedules
 - Were not using VSDs at the time of the study

Procedures
• Alternating treatment design with two conditions
 - 2 intervention sessions per week (counterbalanced)
 - One with JIT PlayTalk software
 - One with SDPro software
• AAC technology preprogrammed with VSDs / hotspots
 - Identical VSDs & hotspots programmed in each condition
• New VSDs and hotspots added during the play interactions as required in JIT condition
• Not possible to add new VSDs or hotspots during interaction in SDPro condition

Research Objectives
1. To investigate the effects of AAC technology that supports JIT programming
2. Specifically, to compare the effects of the JIT system to a traditional AAC system (without JIT capabilities) on:
 • the number of communicative turns taken and
 • the amount of vocabulary available to preschoolers with CCN

AAC Technology with JIT Programming

• Innovative JIT software called PlayTalk, developed by InvoTek, Inc.
 - Allowed quick & easy import of photos as VSDs
 - Using cell phone with Bluetooth connection
 - Allowed quick & easy addition of hotspots and programming of vocabulary
 - Drawing of hotspots with finger or stylus
 - Recording of digitized speech
 - Provided drawing function to add text, numbers, or pictures to VSDs
 - Provided a simple menu easily understood by the children
 - Options always visible, represented as thumbnails of VSDs

Results
• Children with CCN took significantly more turns during 15-min play interactions using JIT PlayTalk compared to SDPro
• Children with CCN had access to significantly more vocabulary concepts using JIT PlayTalk compared to SDPro

Discussion
• Children with CCN took more turns during 15-min play interactions using JIT PlayTalk compared to SDPro and had access to more vocabulary concepts using JIT PlayTalk compared to SDPro
• System allowed partner to be more responsive to children’s interests
• Partner could easily capture new events & vocabulary in response to children’s interests
• Relevant VSDs and vocabulary were easily added
• Children were motivated to communicate since they had easy access to vocabulary of immediate interest to them
• Programming using the JIT PlayTalk software was very efficient
 - Takes less than 1 min from the time it is decided to add a VSD & hotspot until the child is able to use the new concepts to communicate
• Takes approx. 30 sec to take a photo & import it to the system as VSD
• Measures of the children’s engagement during JIT programming demonstrated high levels of interest
 - 97% engagement during VSD
 - 87% engagement during hotspot creation
 - Engagement levels were higher than expected
 - Children were very engaged in the process of building AAC displays
 - They assisted with the process

Limitations / Directions for Future Research
• Limited number of participants, Future research is required to investigate effects with larger number of children with CCN
• Short term evaluation; Future research is required to investigate effects over a longer time period across various partners and environments

Conclusions
• This project represents an exciting transition for the field to AAC systems that are truly dynamic
 • Capture interaction on the fly as it occurs
 • Support dynamic learning / growth
 • Allow partners to respond to children’s interests
 • Reduce programming demands on clinicians & families
• Incredibly easy and time saving
• With access to JIT technologies, parents & clinicians will be better able to support the language & communication development of children with CCN

Acknowledgements
We are very grateful to the children and families who participated in this study.
We greatly appreciate the funding support provided for this study by NIH grant
1R44HD09031-01 (21st Century Health Care Initiative Phase I)
Funding for the students involved in this project was provided by U.S. Department of Education grant H133G080013

http://aac.psu.edu
http://www.invotek.org